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Thin viscous fluid films with f ree  surfaces  in the p resence  of surfactants  a re  considered. 

A closed sys tem of nonlinear equations of variable thickness fi lms is formulated taking account of 
capil lary and van der Waals forces , ,  the sur face- tens ion  gradients,  and the effect of surface viscosity,  vol-  
ume and surface diffusion, and nonlinear adsorption isotherms.  The fundamental dimensionless c r i t e r i a  
governing the film flow modes are  found. A general  solution of the surfactant t ransfer  equations is obtained 
in a quasistat ic  approximation andalso in the opposite weak diffusion limit. A method is proposed for  solving 
problems about thinning films which is based on a quasistat ic analysis of the t ransi t ion domain f rom the 
film to the men i scus .  

A f i lm-thinningmechanism is found for the case when its surfaces  remain  almost  para l le lp lanes  (plane- 
paral le l  thinning). Up to now plane-paral le l  thinning has been observed in many experiments but has not 
been explained. Several  solutions are  obtained for the "fundamental equations corresponding to p lane-para l -  
lel thinning, and conditions are  determined for  which this is poss ible. A nonzero edge angle can fo rm with 
the meniscus as the film becomes thinner. It is also shown that f i lms can be destroyed because of the van 
de r Walls force in the narrow domain of passage f rom the film to a meniscus .  

1.  F u n d a m e n t a l  E q u a t i o n s  
Let the viscous fluid film thickness h vary  at dis tances l such that />>h, i.e., dh/dx<<l (x is 

the coordinate along the l aye r ) .  As in the  hydrodynamic theory o f  lubrication [1], let us assume that 
the reduced Reynolds number  R* = v ' h 2 / l v  is small  (v' is the velocity along the film, and v is the 
kinematic viscosity).  Moreover ,  the charac ter i s t ic  t ime of the p rocess  ~- is sufficiently large (~-v>>h2), 
so that the almost  s ta t ionary velocity distribution along the layer section is built up in a t ime much 
less  than r .  

The fluid velocity v' can be represented as the sum of two solutions, symmet r i c  and an t i symmetr ic  
re lat ive to the coordinate ac ross  the film. Fu r the rmore ,  only the symmet r i c  solutions a re  examined. In 
contrast  to the theory of lubrication, the velocity of surface motion v # const, should be taken into account 
in addition to the mean flow velocity relative to the fixed surface  u. The equation of mass  conservat ion is 

div (hu + hv) = -- Oh / Ot (1.1) 

Here and henceforth, equations including quanhties which vary  just along the plane of film s y m m e t r y  
a re  considered. 

The tangential s t r e s ses  within a f ree  viscous fluid film can be produced under the influence of su r -  
factants.  In many cases of pract ica l  interest  the tangential viscous s t r e s se s  exceed the longitudinal v i s -  
cous s t r e s s e s  by an o rde r  of magnitude. Est imates  show that the longitudinal s t r e s ses  cannot be taken into 
account only under the condition that the change in surface velocity Av at a distance on the o rder  of l, equal 
to the scale of the flow under consideration, is not too large (] Avl ~ al / h). 

In this case integrating the Nav ie r -S tokes  equations ac ross  the film yields 

t2 ~tu = - -  h W p  ~- h~F, 6~u = -- hPz (1.2) 

Here p is the p r e s s u r e  within the film, F is the volume force  directed along the film, la l is the tangen- 
tial force  on the surface.  The quantity p is measured  thr(xlghout f rom the p re s su re  in the gas, which is con- 
s idered constant. 
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Locally, the flow with velocity u corresponding to (1.2) is the flow 
in a plane tube subjected to a p r e s s u r e  gradient  [2]. 

The quantity p in (1.2) is determined by the boundary condition 
for  the normal  s t r e s s e s  on the fi lm surface,  which is associa ted with 
a Laplace p r e s s u r e  jump and with the disjoining p r e s s u r e  II [3], 

--p = 1/2 oAh + H, H = --  A / (6~h 3) (1.3) 

Here only the component of the disjoining p r e s s u r e  associated 
with molecular  interaction, which is the reason for  the breakdown of 
liquid fi lms of macroscop ic  thickness [4, 5], is taken into account, and 
A is the van der  W a a l s - H a m m a c h e r  constant [6]. 

Formulas  (1.2) and (1.3) a re  verified by a direct  computation of 
the p r e s s u r e  and mass  forces  acting in a thin film section in the ab- 
sence of para l le l i sm of the sur faces  [7]. 

The condition for the tangential s t r e s s  P l  on the surface is easi ly 
wri t ten by forming the surface  of some two-dimensional s t r e s s  tensor 

Pij: 

Pt = div P (1.4) 

The results  of numerous experiments  [8-10] have proved that the tensor Pij does not reduce to sur -  
face tension in the p resence  of surfactants  but depends on the surface s t ra in  rate, i.e., anomalously high 
dissipation energy occurs  in a narrow layer  near  the surface.  The l inear dependence analogous to the th ree-  
dimensional Navier--Stokes law [11] is 

P~ = cr6~ + T~j, Ti~ : ~.~ div v 6~.~ + ~h (V~vj + Vjvt) (1.5) 

The surface  viscosi ty  coefficients T/s and X s general ly  depend on the surfactant concentration F in the 
surface.  The sur face  tension a depends essential ly on r .  

The concentrat ion F is related to the surfactant  volume concentration c. Let the adsorption be de- 
scr ibed by the Langmuir  i so therm [12]. Then 

- -  G o = - a R T  ln  ( l  +4- be), r = H c  / ( t  -f- bc), H = ab (1.6) 

Here T is the absolute temperature ,  R is the universal  gas  constant, and a and b a re  constants.  

Toc lose the  sys tem of equations, it is neces sa ry  to take account of surfactant  t ransfer  because of con- 
vection and diffusion. Under the condition h2<<D~ - ('r is the charac te r i s t i c  t ime, and D is the coefficient of 
surfactant  diffusion in a volume) the concentration gradients  ac ros s  the fi lm can be neglected, and the con-  
vect ive diffusion equation can be writ ten as 

div [-- h D V c  - -  2D, Vr + (u + v)hc + 2vF] ---- --  - -~- (he  + 2P) (1.7) 

Here  D s is the coefficient of surfactant  diffusion in a surface.  

Let us note that the limit case  hc /F-*  0 corresponds  to an insoluble surfactaat .  

Equation (1.7) can be rewri t ten in the equivalent fo rm 

2 O F / O t + h O c / O t + ( u + v )  hVc  =div (DhVc+2D~VF--2vF)  (1.8) 

Formulas  (1.1)- (1.7) are  a sys tem of six nonlinear par t ia l -di f ferent ia l  equations and one algebraic  
equation in seven unknowns: the fi lm thickness h, the components of the f i lm surface  velocity v and the 
mean  velocit ies n of fluid motion relat ive to the surface, the surfactant concentrations in the surface  r and 
in the volume c. 

Because  of the complexity of the sys tem of equations, a general  es t imate  of the role of the d iverse  
effects for  an a rb i t r a ry  flow scale  l should f i r s t  be made. 

It is shown in the solution of the problem of thinning a film subjected to capil lary fo rces  [13] in the 
case of a fixed surface that the f i lm becomes thin in an edge domain of width L,~ ~lq/Ap)l/2 as a p r e s s u r e  
change Apc originates f rom the edges of a section of significant length. If  the film dimensions great ly  ex- 
ceed L, then the fi lm certainly loses its p lane-para l le l i sm.  In the genera l  case  of a moving surface,  the" 
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parame te r  S =Ap/2/(ha) determines the connection between the p re s -  
sure  drop Ap and the nonuni:formity of the thickness for a f i lm sec -  
tion of dimension L 

F o r  S<<I the thickness var ies  slightly in a distance of the o rder  
of l. Fo r  B ~ 1 the change in thickness is Ah~  h ,  andplane-para l le l -  
ism does not occur .  

In the absence of surface- tens ion gradients  the film surface  
can be ~inhibited ~ because of the surface viscosi ty  ~u s. The relative 
role of the surface  s t ra in  in the mass  flux or  the degree of surface 
"solidification" is est imated by the p a r a m e t e r  

W = ~h / (6 ~Z~), ~ ~ X~, ~ 

If W>>I, then the surface "solidifies ~ for  a flow of scale l, i.e., 
the change in the surface velocity is negligible as compared with the 
mean fluid velocity relat ive to the surface  Av<<u. 

Fo r  W~ 1 the s t ra ins  of the fi lm surface play an essential  par t .  
If W<<I, then the mass  flux is produced mainly by surface strain and 
the change in velocity Av>>u. Hence, the contribution o f the f lu idve -  
locity u with respect  to the surface cannot be taken completely into 
account in the kinematics.  The fluid in each section seems to be 
"glued ~ to the deformable film surface.  

are  

2. P r o b l e m  of" T h i n n i n g  of  a F i l m  
A d j o i n i n g  a M e n i s c u s  

A thin c i rcular  film of radius r adjoins a meniscus of radius 
R 0 (Fig. 1). The meniscus is in equilibrium, andthe p r e s s u r e  ( - p q )  
inside it is independent of the time. The surfaetant concentration 

Fig.  5 within the meniscus  c o is known. 

If x is the distance f rom the center  of the film, then the boundary conditions for  (1.1)-(1.7) as x-.-~, 

u,  v ~ 0 ,  c ---)- co,  p --~ - -  p~ ( 2 . 1 )  

As the thickness grows h(x- -~) ,  the passage to the meniscus is completed rapidly in a distance on the 

o rder  of (hR0)l/2. 

Initial conditions can be appended to (2.1). However, asymptotic laws for  thinning of films, which are  
independent of the initial conditions, are  of g rea tes t  interest .  The problem of determining these laws is 
considered henceforth.  

Let par2>>ha for  the film. Thenfol lowingSec.1 it can be shown that in the absence of van der  Waals 
forces  the change in p r e s s u r e  p at a distance x (  r - L  (inner domain) f rom the center is much less than Per, 
and there is a narrow transi t ion domain to the meniscus in which the main change in the p res su re  p occurs .  
The innel domain has a dimension slightly different f rom the fi lm dimension r. The width of the transit ion 
domain L~(ha/p~)'l,~r is negligible compared to the fi lm dimension. Let us note that only in the case  
par2>>ha can the concept of a film dimension be introduced to separate  the fi lm f rom the meniscus.  Hence, 
it is natural  that this condition is satisfied well in all experiments [6, 14]. Experiment shows that free f i lms 
a re  often made thin while remaining plane-paral lel .  Then it follows f rom Sec. 1 that their  surface is strained 
substantially in the longitudinaldireetion, and the surface velocity is not zero. Otherwise, p lane-paral le l  
thinning is impossible.  

Because  of the presence  of the small  pa rame te r  L / r  the problem admits of an effective solution. The 
build-up t ime of the transition domain shape ~'1 equals L /v  1 in order  of magnitude, where the charac te r i s t ic  
fluid velocity in the transit ion zone is vl . .~-rh~ Hence, the rat io ~-l/~-, where 1" = [h/h~ is the cha rac te r -  
istic thinning time, is on the o rde r  of L/ r<<l .  Therefore,  the transit ion domain is quasistatic,  and the de- 
r ivat ives with respec t  to time therein can be omitted in the equations of motion. The t ime dependence en- 
t e r s  after  m e r g e r  with the solution valid in the inner domain, which can be sought separate ly .  
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3. I n n e r  D o m a i n .  T a k i n g  A c c o u n t  o f  D i f f u s i o n  

a n d  A d s o r p t i o n  

L e t  us assume that the sur face  v iscos i ty  in the flow whose scale  is r does not suppress  the motion of 
the film surface  (W(r) ~ 1). The sur face- tens ion  gradients  originating during deformation of the surface  must  
be found. 

As is done in many experiments  [14, 15], let D-r >>r 2 (1" is the charac te r i s t i c  thinning t ime D,., D s). 
Then because of diffusion the values of F and c va ry  slightly along the whole f i lm 

[ F - -  F 0 1 ~  F0,  I c - -  c o I ~  c .  ( 3 . 1 )  

the velocity of the fi lm sur face  is not zero  v ~ u, then v,,, r/~'. 

Taking these es t imates  into account, (1.8) can be simplified to 

div (hDVc + 2D~VF -- 2vs = 0 (3.2) 

It hence follows that the change in F caused by surface s t ra in  is compensated by the diffusion flux. 
In the plane or ax isymmetr ie  case, the expression in the div sign in (3.2) equals a constant which is zero  
because of symmet ry :  

hDVc + 2D~ VF = 2vF 

Hence, taking account of (1.6) there follows 

grad (~ = --Kv, K = cHRT / (Ds + D (l ~- bc) ~ h / 2H) (3.3) 

Here c is a constant because of (3.1), and K=K(h) along the film. 

The coefficient K = 0 in the limit of la rge  and small  surfactant concentrations and has the maximum 
value 

Kmax=It~RT c + V  ~ H 
".Dhb i + bc ' c --- i + 2  h 

Neglecting Ps  f rom (1.2), (1.5), and (4.3), we obtain 

u = (K / 6~) by, h grad p = -- 2Kv (3.4) 

The coefficient K governs  the possibi l i ty of film surface deformation without the origination of sub- 
stantial p r e s s u r e  changes and substantial thickness changes. As K - - 0  the gradients  of p and q vanish; the 
fi lm surface is deformed freely.  F o r  large  values K>>6 p / h  the surface  is incompressible.  Small values 
of K are  achieved because of the large value of the diffusion coefficient and also because of the small  con- 
tent of surfactants  in the surface  with respect  to the volume. The coefficient K is lowered substantially in 
the adsorption saturat ion domain c>> 1/b. 

F r o m  (1.1), (1.3), (3.4) we obtain an equation for the  f i lm thickness in the plane or  ax i symmetr ic  ease:  

�9 h a h 3 A 

F o r  A = 0 and smal l  changes in the film thickness, (3.5) agrees  in form with the equation investigated in [13]. 
Equation (3.5) is valid everywhere  if the surface  v iscos i ty  is so smal l  that it does not affect the flow in the 
transit ion domain, The thickness hence va r ies  considerably in the inner domain, and p lane-para l le l  thinning 
is impossible.  

F o r  v ~ u the role of the change in a and the sur face  v iscos i ty  can be compared by forming the appro-  
pr ia te  rat io u /v  of the velocities of motion with the surface and relat ive to it. F o r  W<<kH/6 p, or #s<<K/2, 
the surface viscosi ty  is negligible as compared wither, s ince fo r  the same  u it admits much too la rge  values 
of v. In the inverse limit case, the sur face  v iscos i ty  plays a main role. 

Equation (3.5) admits of the par t i cu la r  solution 

h (x, t) = h0 -- ho" /; (ho) 
16~ho: i + ~/~ ~ff0) / 61~ x (3.6)" 

which is valid for Ih--h0]<<h 0. Here x is the distance along the axis. The thinning of the film is almost  plane- 
para l le l  with edges thicker than in the center.  The nonunfformity in the thickness is grea tes t  at K=Kma x. 
The condition for  p lane-para l le l i sm of the inner domain ]h~ 3 follows f rom (3.6). 
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If the role  of diffusion is negligible Dr2<<% and, moreover ,  the mean velocity of fluid motion relat ive 
to the sur face  is considerably less than the velocity of the surface  u<<v, then the t ransfer  equation (1.7) has 
the integral 

c + 2 r  / h = / ( ~ ) ,  ~ = i, 2 (3.7) 

Here ~i are  Lagrange coordinates.  The surface  tension is found easily as a function of the Lagrange 
coordinates and the film thickness a = a  (~i, h). It is hence seen that for  large film thicknesses h>>2F/c  the 
thickness changes result  in relat ively small  changes in a .  

4 .  T r a n s i t i o n  D o m a i n  f o r  KL2<<#s  

In the quasistat ic  approximation (Sec. 2), the main equations in the transit ion domain a re  

htt--}-hv----hovo, t2~tu #v h d (  z #h A ] (4.1) 
h = 2 ~ , ~ =  ~ ;  ---~ d~ + 

/ 

It, = g, + 2~, (4.1) 

Here  because of the condition L<< r small t e rms  in the equations, corresponding to axial symmetry ,  
a re  omitted. To analyze the transi t ion domain it is sufficient to consider  the plan e problem. 

The conditions 

h--)- h0, v--)- vo, x -+  -- r162 (4.2) 
v --)- O, (rd2h / d x  ~ ~ 2po,  x - +  ~ (4.2) 

a re  given at infinity. 

The solution of (4.1) under the conditions (4.2) is determined to the accuracy  of t ranslat ion,  The 
asymptotic  solution of the l inearized equations (4.1) as x ~ - ~  can be used to determine the initial data of 
the numerical  computations just as has been done in [16] in the solution of the problem of motion of a film 
with an incompressible  surface.  

In dimensionless  notation 

x = l~, h ----- hoy  , l -- (a / 24 ItVo)t/, ho (4.3) 

there  follows f rom (4.1) for  values of y as x - * - ~  

wy"  - -  y' + W (y - -  i )  = 0,  w = h0it ,  / 6 i t  l ~ 

The equation 

WX3 --  ;~ + W = O  

corresponding to a solution of the fo rm 1+ exp (k~), has two posit ive real  roots for  W( 1/322/3. F o r  W> 
1/322/3 there a re  two complex roots ReX > 0. Correspondingly, for  Wr i/322/3 the asymptotic solution is 
monotonic and for  large  values of W has the form of a wave with rapidly damping amplitude. The mono- 
tonic solution is charac te r i s t i c  fo r  a tensi le  surface,  while the waveform solution is charac te r i s t ic  for  an 
incompress ib le  surface.  The passage  f rom one solution to the other occurs  fo r  #s ~/~R 0. The asymptotic 
investigation of (4.1) for the case #s>>/~R0 as x - * ~  yields 

v --- x -~, ~, = t2 It Ro / ~t, 

which corresponds  to a passge  to the limit of a constant surface velocity. Viscous tension hence decreases  
as 1/x. 

5.  T r a n s i t i o n  D o m a i n  f o r  K L  2 <</~s <<R0/~. E d g e  A n g l e  

o f  a F i l m  w i t h  a M e n i s c u s  

In this case u<<v, and integration of 6.1) taking account of (4.2) yields 

# h  i , dh \2 4~,hovo dh A ( i t ) 
h ~ = . ~ - ~ )  4 ~h~ d;  2~,~ ~ - - - ~  (5.1) 

In the dimensionless notation 

x = l~, h = hoy  , l = aho ~ / (4it~v0) 
B = A/~ / (~ah04), ct = 2p~P / (aho) (5.2) 
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the problem of analyzing the t ransi t ion domain is 

2yy"  = y,2 + 2 y , y - ~  _ B (t --  y-q); y -+ l, x -+ -- oo; y" -+ ~,  x .-~ oo (5,3) 

For  B=0  Eq. (5.3) admits of solution in quadratures .  Integrating (5.3), we obtain 

y' = % ( V ~ -  y-') (5.4) 

Hence, for the value of o~ in (5.2) there follows: Q~=2/2 5. Curve 1 (Fig. 2) corresponds to the solution 
for B = 0. The transition-domain dimension L can be determined approximately by taking it to be the dis- 
tance at which y changed from 1.14 to 2. Then L~31, and the re foUows from (5.2) 

p~L ~ = 0.36 h0~ , L ~ = 0A8 hoR o (5.5) 

which confirms the genera l  es t imate  paL2,,, ha well. 

Taking account of v~= 2/25, we find the veloci ty of the inflowing film f rom (5.2): 

v 0 = (5 / 4 ~t~) h: / ,  V ~ p ~  (5.6) 

The condition for  which (5.6) is valid is W(L)<<I, which, taking (5.5) into account, is equivalent to #s<< 
R0#. 

The solution with the van der  Waals force  taken into account (B ~ 0) is found numerical ly.  The solu- 
tion which decreases  most  rapidly as x ~ - ~  is of interest.  The scale  of the change in another possible so-  
lution is considerably g rea te r  and this solution will not be discussed.  

The y(~) curves 2 and 3 in Fig. 2 correspond to the values B = 0.08 and 0.16. The dependence o~(B) is 
hardly different f rom the l inear  

cr = 0.08--0.5B 

which yields a co r r ec t  result  for  B = 0 and 0.16, and the difference in slope does not exceed ,~ 12%. The fact 
that c~=0 at B= 0.16 is important. Since f rom (5.2) 

3 pm / p~ = B / a (Pro = - -  H = A / 6 nho 8) 

then [pm>>pa] as [B-* 0.16] and the van der  Waals forces  play a ma jo r  par t  in the transit ion domain. The 
asymptot ic  y(~) as ~ --*~ has the following fo rm for B= 0.16: y=0 .4~ .  Thedimension of the transi t ion do- 
main  is a l ready not determined by the quantity P a ,  but by pm (L 2 ~ a h0/2Pm). Hence, L << ,/h0R 0. Therefore,  
for pm>>pq, the fi lm makes the edge angle 

0 = (A / n.)'/, ho -z (5.7) 

with the meniscus.  

The velocity of film influx detezmined f rom (5.2) 

is independent of the thickness ff B,,, 0.16. 

The approximate formula 

(5.8) 

(5.9) 

agrees  with the exect formulas  (5.6) and (5.8) in the limits h 0 - - ~  and h0--* 0 and has an e r r o r  not exceeding 
4% for  intermediate va lues  of h 0 when Pa "~ A/(4~rh03)" 

6. T r a n s i t i o n  D o m a i n  f o r  P s  >> R0P. B r e a k d o w n  u n d e r  

t h e  E f f e c t  o f  ~he V a n  d e r  W a a l s  F o r c e  

In the case under consideration, the surface behaves as an incompressible  surface in the transit ion 
domain. The velocity v ~ v 0 and the Eqs. (4.1) simplify to 

6._~xa_~_..~.~dah A dhdx- 24~tV0h8 (h 0 - -  h) (6.1) 

This equation has been examined in [16] fo r  A = 0, where the influx to the meniscus has been investi-  
gated of a f i lm whose surface is incompress ible  because of a. Let us note chat such a situation is not poss[-  
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ble for  films being thinned. When the surface is incompressible  because of q in the transition domain, then 
it is incompress ible  everywhere,  and the velocity is v = 0. 

The viscous tension of the Txx component of the v i s cous - s t r e s s  tensor in the surface defined by (1.5) 
is important. In addition to the conditions h---h 0 as x----~o, ah"---2pa, as x---co,the condition for the differ-  
ence in the viscous tension T( - ) a s  x----co and the viscous tension T (+) as x--co should be satisfied. The 

X X  XX 

tensions T( 9 and T(~ +) produced because of the surface  viscosi ty  can be substantial only when W(L)>>I. Their  
values can be found-from the solution of the problem in the exter ior  of the transit ion domain. 

There  follows f rom (1.2) and (1.5) for  the difference in tensions 

T = 2r~2 - 2T(+~ ) = ~/~ o (hh" - -  '/., h'~)~ + A I (4gh0 2) (6.2) 

Here T > 0 always, since in the interior domain the surface is s t retched (T (-)> 0), but is compressed  xx 
(Ti+ x) r 0), on the meniscus above the transit ion domain. Here the subscript  co denotes the limit value x ~  co. 
Replacement of the var iables  (4.3) results  in the problem of finding solutions y(~ ) of the equation 

y4y,, + B y '  + y (y - -  l )  = 0 (6.3) 

under the conditions 

y - ~ i  as ~ - - o o  
y ~  = a,  (yy" - -  1/2y'2)~ + 1/~ B = a T  1 

2p~ 12 3uP m A T 
ct = ~ , B ~ -  Pa ' Pro----- 6--~-o a , T I  = paho 

(6.4) 

The asymptotic  of the solution of (6.3) as ~----co is 

y = i ~ exp (31~) cos (a2~ + (g) (6.5) 

to the accuracy  of translation. 

The constants a 1 and a 2 here  a re  determined f rom the solutions of the cubic equation 

~a ..~ B~ + i = 0, ~, = a 1 +  ia~, a 1 ~  0, a 2 ~ 0 

Assigning a value of the phase angle q~ in (6.5) between 0 and 27r, and continuing the solution having 
the form (6.5) for -a i$>> 1, numerical ly ,  inthe domain ~ > 0, we obtain all the solutions of the problem (6.3), 
(6.4). 

The characteristic modes of the transition domain are represented in Fig. 3 for the values B = 0 and 1 
(curves 1 and 2, respectively) and T I = 0. The limit T<<po.h 0 corresponds to the value of the dimensionless 
tension T i = 0. As should be expected from an analysis of the asymptotic, the solution in the transition do- 
main is of wave nature. 

Numerical  computations yield the dependence of the quantities 04 T l, B in pa ramet r i c  fo rm as the 
functions TI(B, (p) and o~(B, q~). The function Tl(a, B) is shown in Fig. 4 f o r  the values B= 0, 0.5, 0.8, 1.105, 
1.5, 1.8 (curves 1-6, respectively).  The quantity max T 1 dec reases  monotonically f rom 0.346 at B = 0 to 0 
at B=l .105 ,  while max TI< 0 in the domain B> 1.105. 

In the absence of van der Waals forces  (B=0) and for  the viscous tension T<<po.h 0 we have the quan- 
tity a=1 .185 .  Hence, it follows f rom (4.3) and (6.4) that 

v 0 = 0.092 (poho)V$ / (l~(Jv,) (6.6) 

The maximum value of the ra t io  pm/pa  = 0.18 for  T 1 = 0 is reached for  B = 0.9. 

Fo r  B >1.105 or pm > 0.18 pq no stat ionary solution exists in the transit ion domain which will sat isfy 
the condition T > 0. For  pm<<pq the lack of solutions means the transit ion to a flow with a f rozen surface 
when it is necessa ry  to take account of the change in thickness to the transi t ion domain in the inter ior  do- 
main  of the 'film. The disappearance of s tat ionary solutions means that a much more  rapid thinning of the 
film has s tar ted in the transi t ion domain than in the inter ior .  

Fo r  P r o "  0.18 Pa the disappearance of a s tat ionary solution at h = h .  is accompanied by rapid break-  
down of the film. The wavy nature of the solution (Fig. 3) contributes to this since the p re s su re  p in thinner 
film sections is elevated substantially because of the molecular  fo rces  and grows sharply as the thickness 
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d i m i n i s h e s .  T h e r e f o r e ,  if #s>>R0tt, then b r e a k s  in the  f i l m  in the  t r a n s i t i o n  d o m a i n  o c c u r ,  a s  fo l lows  f r o m  
the cond i t i ons  p m  ~ 0.18 pa  and (6.4), a t  a t h i c k n e s s  g r e a t e r  than o r  equa l  to 

h.  ~ 0.66 (A /p~)'13 

7 .  P l a n e - P a r a l l e l  T h i n n i n g  

The  f i l m  s u r f a c e s  r e m a i n  p a r a l l e l  p l a n e s  wi th  a v a r i a b l e  d i s t a n c e  h0(t) b e t w e e n  t h e m  if  the  v e l o c i t y  
d i s t r i b u t i o n  has  t he  f o r m  v = v 0 x / r .  The  f i l m  and i t s  s u r f a c e  h e n c e  u n d e r g o  u n i f o r m  s t r a i n .  The  f i l m  is  c o m -  
p r e s s e d  in a d i r e c t i o n  p e r p e n d i c u l a r  to the  s u r f a c e ;  i t s  s u r f a c e  b r o a d e n s .  Th i s  is  p u r e  s h e a r ,  the  e x a c t  s o l u -  
t i on  of the N a v i e r - S t o k e s  equa t ions .  

When v i s c o u s  t e n s i o n  in the  i n n e r  d o m a i n  i s  s m a l l  c o m p a r e d  with  the  t ens ion  in the  t r a n s i t i o n  doma in ,  
the  two s o l u t i o n s  a t  x ~ r a r e  m e r g e d  in t he  f i l m  t h i c k n e s s  and v e l o c i t y ,  s i n c e  the  c o r r e s p o n d i n g  p r o b l e m s  
in the  t r a n s i t i o n  d o m a i n  a r e  s o l v e d  t ak ing  account  of the v i s c o u s  t e n s i o n s  be ing  z e r o  a s  x ~ *  ~ .  T h e  m e r g -  
e r  p e r m i t s  f ind ing  the th inn ing  iaw.  

T h e  d e p e n d e n c e  of the th inn ing  r a t e  on the f i l m  d i m e n s i o n  r fo r  p l n n e - p a r a l l e l  th inning is  

dh o / dt = - -  2hovo(ho) / r 

w h e r e  the  func t ion  v 0 010) is  d e t e r m i n e d  by the  f lu id  and s u f f a c t a n t  p r o p e r t i e s  and de pe nds  on the p r e s s u r e  
in  the  m e n i s c u s  Po'" 

F o r  the  c a s e / ~ s  <<R0# and in t he  a b s e n c e  of van d e r  W a a l s  f o r c e s ,  t h e r e  fo l lows  f r o m  (5.6) and (1.1) 

dh o / dt = - -  2.5 ho'l~ V-Tppz / (ix~r), I~ = ~.~ "~ 2~h (7.1) 

Hence ,  h 0 ~ t -2/3 a s  t ~ ~o. 

F o r  ~ ~ B0~, po ~ A / (6nh03) we  ob t a in  f r o m  (5.9) 

dh o / dt =- - - t . 25  h, VA-~  / (~,r y ~ )  (7.2) 

The  f i l m  t h i c k n e s s  d e c r e a s e s  e x p o n e n t i a l l y  wi th  t ime .  

T h e  th inning law 

dh o / dt = 0.18 p~/~ho'/2 / (r ~t~'h) (7.3) 

f o l l ows  f r o m  (6.6) f o r  the  c a s e  #s>>R0g when the  s u r f a c e  b e h a v e s  as  an i n c o m p r e s s i b l e  s u r f a c e  in the t r a n -  
s i t i on  doma in .  

T h e  t i m e  d e p e n d e n c e  i s  ana logous  to  (7.1). 

C o m p l i a n c e  wi th  the  cond i t i ons  found in Sec .  3 is n e c e s s a r y  fo r  the  v a l i d i t y  of U .1 ) -  (7.3). 

As Ps g r o w s  in the  d o m a i n  ps>>R0P the f o r m u l a  (7.3) c e a s e s  to be  v a l i d  when the  v i s c o u s  t e n s i o n s  ou t -  
s i d e  the  t r a n s i t i o n  d o m a i n  t u r n  out to b e  s u b s t a n t i a l .  

In o r d e r  to t ake  account  of the v i s c o u s  t e n s i o n s  o u t s i d e  the  t r a n s i t i o n  domain ,  l e t  us  c o n s i d e r  the  m o -  
t ion  in the  s u r f a c e  s e p a r a t e l y  f r o m  the  f lu id  m o t i o n  in the  v o l u m e  by a s s u m i n g  tha t  t h e i r  i n t e r a c t i o n  i s  e s -  
s e n t i a l  only  in the  t r a n s i t i o n  d o m a i n  which w e  r e p l a c e  by a t e n s i o n  jump .  A n a l y s i s  of the  a s y m p t o t i c  ou t -  - 
s i d e  the  t r a n s i t i o n  d o m a i n  shows  that  such  an  a p p r o a c h  is  j u s t i f i e d  in  the  l i m i t  ps>>R0g.  M o r e o v e r ,  we  a s -  
s u m e  in  the  d e r i v a t i o n  tha t  the f i l m  r a d i u s  r is  much  l e s s  than the m ~ i s c u s  r a d i u s  R 0. Then  the  s u r f a c e  
of the m e n i s c u s  is  s l i g h t l y  d i f f e r e n t  f r o m  a p l a n e  a t  a d i s t a n c e  of the o r d e r  of s e v e r a l  r .  

Equa t ion  (1.4) taking accoun t  of (1.5) u n d e r  the  a s s u m p t i o n s  m a d e  y i e l d s  

d2v i dy V 0 
d x  ' ' ' ' ~  "~- x d x  x ~ 

Hence ,  t ak ing  account  of the cond i t ion  v = v  0 a t  x = r ,  w e  f ind that  

v =  v o x / r  for x ~ [ 0 ,  r], v =  v o r / x  for x ~ r  

The  v i s c o u s  t e n s i o n s  in (6.2) h e n c e  equa l  

(-) ~ = ( 7 . 4 )  Tx~ = 2 (~.~ -~ ~ls) v0 / r, T (+) - -  2~hv0 / r, T = 4 (~., -~ 2~1~) v0 / r 

Ana logous ly ,  in  the  p l a n e  c a s e  
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v = VoX / r for x ~ [0, r], v = Vo for x > r (7.5) 
T = 2 ( ~ , ~ W 2 y ~ ) v  o / r  

Equating the values  of the outer  tension jump (7.4) or (7.5) to the inner jump determined f r o m  (6.4), 
we find 

~'s + 2Tls ( 2p~ho ~V= 
q ~ \ ~ /  = (s (a) ~7.6) 

H e r e  q = l ,  2 in the a x i s y m m e t r i c  and plane cases ,  respec t ive ly .  The tensions in the inner  domain can 
be  neglected if the left s ide of (7.6) is much less  than one. Both ( ~ 1 . 1 8 5  and the thinning law (7.3) c o r r e -  

�9 spond to this.  As the left  side of (7.6) grows,  the p a r a m e t e r  o~ inc reases  monotonical ly  as follows f r o m  Sec. 
6, and hence the r a t e  of thinning drops.  

8. T h i n n i n g  of  a F i l m  u n d e r  t h e  E f f e c t  

o f  v a n  d e r  W a a l s  F o r c e s  

When the ro le  of su r face  diffusion is sma l l  as compared  to the ro le  of volume diffusion 

D~ - ~  D (l ~- bc)~h / 2 H  (8.1) 

t he re  follows f r o m  (3.5) and (3.3) under  the conditions of a predominat ing effect  of the van de r  Waals fo rces  

2n I 4H~cRr + ~ dlv -~ grad h = -~- (8.2) 

Although this equation is nonevolut ionary and the Cauchy p rob lem is incor rec t  fo r  it, i ts solution is 
of in te res t  because  the f i lms  a r e  s o m e t i m e s  thinned only under  the effect  of van der  Waals f o r ce s  [17] p r i o r  
to breaking  down. 

Equation (8.2) admits  of the solution 

h = (h o - -  a t )  Y (x) (8.3) 

In the a x i s y m m e t r i c  case  the function Y{x) sa t i s f i e s  the equation 

d~Y t [ d r  12_.~ I d r  ~ a A [D(i-[-bc)  ~ .~  
. - = r - v ,  (8.4) 

Y = l ,  Y' = 0 for x = 0  (8.4) 

F o r  numer ica l  integrat ion it is  convenient to se lec t  the va r i ab le  

= x V ~  

The resu l t  of a numer ica l  computat ion is r ep resen ted  by the curve  1 (Fig. 5). At the point ~0=2.828 
there  is a ve r t i ca l  asymptote ;  the f i lm thickness becomes  infinite as (f0-~) -2. 

In (8.3) o~=G~ra/r 2. He re  ~r is a point on the curve  y(~) to which the f i lm radius  r cor responds .  The 
value of ~r can cor respond  to both the d is tance  to the asympto te  and to the d is tance  ~r=1.53, say, at which 
the f i lm thickness doubles. 

In this la t te r  case  the thinning law differs  slightly for  D = 0 f r o m  that which follows f r o m  the Reynolds 
equation [17]. The l inea r  dependence (8.3) ag rees  with exper iment  [17]. 

In the plane case,  an equation analogous to (8.4) which follows f r o m  (8.2) 

Y d ) Y  / d~ ~ - -  ( d Y  / d~) ~ = y a  

is integrated explicity: 

Y = t / cos~ (~1/2) (8.5) 

Evidently Y - - ~  as ~ ~ ~ / ]/-2 = 2.22t. Curve  2 (Fig. 5) cor responds  to (8.5). 

When just  su r face  diffusion is important,  i .e.,  in the l imit  case  opposite to (8.1), Eq. (3.5) is 

AD, div ~ i_=.gradh~ = Oh (8.6, 
4ncHRT \ h a /  Ot 

if  6Ds>>cHRT p is sat isf ied.  T h e r e  is the pa r t i cu l a r  solution 
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h = h , ( i  -- t ~  ~ ) v , Y ( x ) ,  Y ( O )  = I 

In the plane case  Y (0  is de termined by the quadra ture  

~i'5V 

] / - ~  e -"d t  = ~, ~ = x 7 -~- '  M = 2gcHRT 
0 

The solution (Fig. 5, curve  3) becomes  infinite at ~ = q ~ .  The quantity }r is determined in t e rms  of 
the value of ~" corresponding to the f i lm radius r as 

= hd-~ / (~r~M) 

As is seen f rom (8.6), in the ax i symmet r i c  case,  Y (}) sat isf ies  the equation 

y y , ,  _ 2 y , ~  + y y ,  x -a  _ y 4  = 0 

The solution with the initial data Y=I ,  Y' =0 at } = 0 becomes  infinite f o r  } =1.68 (Fig. 5, curve  4). 
The thickness h is twice the thickness at the center  fo r  } =1.325. 

The p r e s e n c e  of a ver t i ca l  asymptote  in the solution is common to all  four  problems considered.  The 
solutions obtained can be meaningful only when the capi l lary p r e s s u r e  in the meniscus  is p a < < p m = -  II (110), 
and, the re fore ,  the fi lm dimension is of the o rd e r  of the distance to the ve r t i ca l  asymptote.  

The author is gra teful  to A. A. Trapeznikov for  attention to the resea rch ,  and to G. A. Martynov and 
N. V. Churaev for  discussing the resul t s .  
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