THEORY OF THINNING OF FREE VISCOUS
FLUID FILMS

O. V. Voinov UDC 532.516

Thin viscous fluid films with free surfaces in the presence of surfactants are considered.

A closed system of nonlinear equations of variable thickness films is formulated taking account of
capillary and van der Waals forces,’ the surface-tension gradients, and the effect of surface viscosity, vol-
ume and surface diffusion, and nonlinear adsorption isotherms. The fundamental dimensionless criteria
governing the film flow modes are found. A general solution of the surfactant transfer equations is obtained
in a quasistatic approximation and also in the opposite weak diffusion limit. A method is proposed for solving
problems about thinning films which is based on a quasistatic analysis of the transition domain from the
film to the meniscus.

A film-thinningmechanism is found for the case when its surfaces remain almost parallel planes (plane-
parallel thinning). Up to now plane-parallel thinning has been observed in many experiments but has not
been explained. Several solutions are obtained for the fundamental equations corresponding to plane-paral-
lel thinning, and conditions are determined for which this is possible. A nonzero edge angle can form with
the meniscus as the film becomes thinner. It is also shown that films can be destroyed because of the van
der Walls force inthe narrow domain of passage from the film to a meniscus.

1. Fundamental Equations

Let the viscous fluid film thickness h vary at distances ! such that I>h, i.e., dh/dx«1 (x is
the coordinate along the layer). As in the hydrodynamic theory of lubrication [1], let us assume that
the reduced Reynolds number R* =v'h¥1v is small (v' is the velocity along the film, and v is the
kinematic viscosity). Moreover, the characteristic time of the process T is sufficiently large (7v>>h?,
so that the almost stationary velocity distribution along the layer section is built up in a time much
less than 7.

The fluid velocity v' can be represented as the sum of two solutions, symmetric and antisymmetric
relative to the coordinate across the film. Furthermore, only the symmetric solutions are examined. In
contrast to the theory of lubrication, the velocity of surface motion v = const. should be taken into account
in addition to the mean flow velocity relative to the fixed surface w. The equation of mass conservation is

div (hu + hv) = — Oh [ 82 1.1)
Here and henceforth, equations including quantities which vary just along the plane of film symmetry
are considered.

The tangential stresses within a free viscous fluid film can be produced under the influence of sur-
factants. In many cases of practical interest the tangential viscous stresses exceed the longitudinal vis-
cous stresses by an order of magnitude. Estimates show that the longitudinal stresses cannot be taken into
account only under the condition that the change in surface velocity Av at a distance on the order of 1, equal
to the scale of the flow under consideration, is not too large (jAv| << ul/ k).

In this case integrating the Navier—Stokes equations across the film yields
12 pu = — h*p + B?F, Gpu = — kP, - 1.2)
Here p is the pressure within the film, P is the volume force directed along the film, P; is the tangen-

tial force on the surface. The quantity p is measured throughout from the pressure in the gas, which is con~
sidered constant.
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Locally, the flow with velocity u corresponding to (1.2) is the flow
in a plane tube subjected to a pressure gradient [2].

The quantity p in (1.2) is determined by the boundary condition
for the normal stresses on the film surface, which is associated with
a Laplace pressure jump and with the disjoining pressure 11 [3],

—p =Yy 0Ah +1I, I = — A/ (6rh?) 1.3

e
AL

Fig. 1 Here only the component of the disjoining pressure associated

with molecular interaction, which is the reason for the breakdown of
7 A / liquid films of macroscopic thickness [4, 5], is taken into account, and
Z A is the van der Waals—Hammacher constant [6].

]
A,%/ ’ Formulas (1.2) and (1.3) are verified by a direct computation of
the pressure and mass forces acting in a thin film section in the ab-
sence of parallelism of the surfaces [7].

NN

The condition for the tangential stress P; on the surface is easily
written by forming the surface of some two-dimensional stress tensor

Plj:

P, =divP 1.4)
The results of numerous experiments [8-10] have proved that the tensor Pjj does not reduce to sur-
face tension in the presence of surfactants but depends on the surface strain rate, i.e., anomalously high

dissipation energy occurs in a narrow layer near the surface. The linear dependence analogous to the three-
dimensional Navier—Stokes law [11] is

Py = 0854 Tiy, Ty = A divv 85 + m, (Vi -+ Vioy) 1.5)

The surface viscosity coefficients g and Ag generally depend on the surfactant concentration T in the
surface. The surface tension o depends essentially on T.

The concentration T" is related to the surfactant volume concentration c. Let the adsorption be de-
scribed by the Langmuir isotherm [12]. Then

06— 0y=—aRTIn{(1 4 be), T =He/ ({1 -+ be), H = ab (1.6)
Here T is the absolute temperature, R is the universal gas constant, and @ and b are constants.

Toclosethe system of equations, it is necessary to take account of surfactant transfer because of con-
vection and diffusion. Under the condition h*« D~ (T is the characteristic time, and D is the coefficient of
surfactant diffusion in a volume) the concentration gradients across the film can be neglected, and the con-
vective diffusion equation can be written as

div [~ ADVc — 2D,VT + (u + v) ke 4 2vT] = — - (e 4- 2T) .7
Here Dg is the coefficient of surfactant diffusion in a surface.
Let us note that the limit case he/I'—0 corresponds to an insoluble surfactant.

Equation (1.7) can be rewritten in the equivalent form
29T /0t+ hoc/ot-+ (u-+ v)hrVe =div (DhVe + 2D VI — 2vI) (1.8)

Formulas (1.1)-(L.7) are a system of six nonlinear partial-differential equations and one algebraic
equation in seven unknowns: the film thickness h, the components of the film surface velocity v and the
mean velocities u of fluid motion relative to the surface, the surfactant concentrations in the surface r and
in the volume c.

Because of the complexity of the system of equations, a general estimate of the role of the diverse
effects for an arbitrary flow scale I should first be made.

It is shown in the solution of the problem of thinning a film subjected to capillary forces [13] in the
case of a fixed surface that the film becomes thin in an edge domain of width L~ mo-/Ap)i/ 2 as a pressure
change Apcoriginates from the edges of a section of significant length. If the film dimensions greatly ex-
ceed L, then the film certainly loses its plane-parallelism. In the general case of a moving surface, the
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y [ parameter S=Apl%/(hg) determines the connection between the pres-
// Z sure drop Ap and the nonuniformity of the thickness for a film sec-
" \ tion of dimension I.

For 8«1 the thickness varies slightly in a distance of the order
of I. For S>1 the change in thickness is Ah~ h , andplane-parallel-
i - -Z 7 I3 ism does not occur. )
Fig. 3 In the absence of surface-tension gradients the film surface

can be "inhibited" because of the surface viscosity pg. The relative
role of the surface strain in the mass flux or the degree of surface

7 - "solidification" is estimated by the parameter
az % = 7 W = ush /(6 pb), s ~ he M,
g ] If W>>1, then the surface "solidifies" for a flow of scale 1, i.e.,
// A the change in the surface velocity is negligible as compared with the
02 L 3 \1 mean fluid velocity relative to the surface Av<u.
Kby 73 73 - For W< 1 the strains of the film surface play an essential part.
. If W1, then the mass flux is produced mainly by surface strain and
Fig. 4 the change in velocity Av>u. Hence, the contribution ofthe fluid ve-
locity u with respect to the surface cannot be taken completely into
account in the kinematics. The fluid in each section seems to be
, - "olued” to the deformable film surface.
/_, )l/ 4 2. Problem of Thinning of a Film
25 / 7 / Adjoining a Meniscus
/ 7 A thin circular film of radius r adjoins a meniscus of radius
75 — F Ry (Fig. 1). The meniscus is in equilibrium, and the pressure (—pg)
inside it is independent of the time. The surfactant concentration
Fig. 5 within the meniscus c; is known.

If x is the distance from the center of the film, then the boundary conditions for (1.1)~(1.7) as x—w,
are

u, v>0, c—>cy p—>—Ps 2.1)

As the thickness grows h(x—w), the passage to the meniscus is completed rapidly in a distance on the
order of (hRy)!/2.

Initial conditions can be appended to 2.1). However, asymptotic laws for thinning of films, which are
independent of the initial conditions, are of greatest interest. The problem of determining these laws is
considered henceforth,

Let par2 »hg for the film. ThenfollowingSec.1 it can be shown that in the absence of van der Waals
forcesthe change in pressure p at a distance X< r—L (inner domain) from the center is much less than p,
and there is a narrow transition domain to the meniscus in which the main change in the pressure p occurs.
The innei domain has a dimension slightly different from the film dimension r. The width of the transition
domain L~ (ho/ Ps)* << r is negligible compared to the film dimension. Let us note that only in the case
p,.r2>>hg can the concept of a film dimension be introduced to separate the film from the meniscus. Hence,
it is natural that this condition is satisfied well in all experiments [6, 14]. Experiment shows that free films
are often made thin while remaining plane-parallel. Then it follows from Sec. 1 thattheir surfaceis strained
substantially in the longitudinaldirection, and the surface velocity is not zero. Otherwise, plane-parallel
thinning is impossible.

Because of the presence of the small parameter L/r the problem admits of an effective solution. The
build-up time of the transition domain shape 7y equals L/v; in order of magnitude, where the characteristic
fluid velocity in the transition zone is vj~—rh°/h. Hence, the ratio 7;/7, where 7 = |h/h°}, i§ the character-
istic thinning time, is on the order of L/r«1. Therefore, the transition domain is quasistatic, and the de-
rivatives with respect to time therein can be omitted in the equations of motion. The time dependence en-
ters after merger with the solution valid in the inner domain, which can be sought separately.
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3. Inner Domain. Taking Account of Diffusion

and Adsorption

Let us assume that the surface viscosity in the flow whose scale is r does not suppress the motion of
the film surface (W(r)< 1). The surface~tension gradients originating during deformation of the surface must
" be found.

As is done in many experiments [14, 15], let Dt >1r? (7 is the characteristic thinning time D~ Dg).
Then because of diffusion the values of I"and c vary slightly along the whole film

[T =T <Ly Je—co| <o 3.1)
If the velocity of the film surface is not zero v u, then v~ r/r.
Taking these estimates into account, (1.8) can be simplified to

div (hDVe + 2D,VI' — 2vI') = 0 (3.2)

It hence follows that the change in I" caused by surface strain is compensated by the diffusion flux.
In the plane or axisymmetric case, the expression in the div sign in (3.2) equals a constant which is zero
because of symmetry:

hDVec + 2D, VI' = 2vI
Hence, taking account of (1.6) there follows
grad 6 = —Kv, K =cHRT/(D,+ D (1 -+ be)® b/ 2H) 3.3)
Here c is a constant because of (3.1), and K=K ) along the film.

The coefficient K=0 in the limit of large and small surfactant concentrations and has the maximum
value

_ HRT o 11/ D H
Kmax = Dhb 1+ e’ C=Tl/1+2_ﬁT
Neglecting p g from (1.2), (1.5), and (4.3), we obtain

u=(K/6p)hv, hgradp = — 2Kv 3.4)

The coefficient K governs the possibility of film surface deformation without the origination of sub-
stantial pressure changes and substantial thickness changes. As K— 0 the gradients of p and ¢ vanish; the
film surface is deformed freely. For large values K>»6 u/h the surface is incompressible. Small values
of K are achieved because of the large value of the diffusion coeffici ent and also because of the small con-
tent of surfactants in the surface with respect to the volume. The coefficient K is lowered substantially in
the adsorption saturation domain ¢>>1/b,

From (1.1), (1.3), {3.4) we obtain an equation forthe film thickness in the plane or axisymmetric case:
. h2 5 A oh

For A=0 and small changes in the film thickness, (3.5) agrees in form with the equation investigated in [13]. -
Equation (3.5) is valid everywhere if the surface viscosity is so small that it does not affect the flow in the
transition domain. The thickness hence varies considerably in the inner domain, and plane-parallel thinning
is impossible. ’

For v > u the role of the change in ¢ and the surface viscosity can be compared by forming the appro~
priate ratio u/v of the velocities of motion with the surface and relative to it. For W<kH/6 y, or /,zs«KZz,
the surface viscosity is negligible as compared witho, since for the same u it admits much too large values
of v. In the inverse limit case, the surface viscosity plays a main role.

Equation 3.5) admits of the particular solution

. W K (ho) -
h(z,t) = ho 16:;11021+hoK(ho)/6p“"”4 (3.6)

which is valid for [h—hyl«<hy. Here x is the distance along the axis. The thinning of the film is almost plane-
parallel with edges thicker than in the center. The nonuniformity in the thickness is greatest at K=Ky,a%.
The condition for plane-parallelism of the inner domain |h°|r'K<«16¢h? follows from (3.6).
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I the role of diffusion is negligible Dr?<«r, and, moreover, the mean velocity of fluid motion relative
to the surface is considerably less than the velocity of the surface u«v, then the transfer equation (1.7) has
the integral

¢+ 2T/ h=f(k), i=1,2 3.7)

Here £; are Lagrange coordinates. The surface tension is found easily as a function of the Lagrange
coordinates and the film thickness ¢ =g (&, h). It is hence seen that for large film thicknesses h>>2T1/c the
thickness changes result in relatively small changes ing.

4. Transition Domain for KL%« g

In the quasistatic approximation (Sec. 2), the main equations in the transition domain are

_ 1200 & d P, A :
hu+hv—hovo, ——}L—-—=2M3d—;=h7x—(——g—m+m) (4 1)
Bs = A, ++ 2n, (4.1)

Here because of the condition L« r small terms in the equations, corresponding to axial symmetry,
are omitted. To analyze the transition domain it is sufficient to consider the plane problem,

The conditions
h—hy v—> vy, 2> — o0 @.2)
v— 0, od®h / dz? — 2p,, z— oo (4.2)
are given at infinity. '

The solution of @.1) under the conditions (4.2) is determined to the accuracy of translation, The
asymptotic solution of the linearized equations {¢.1) as Xx——w can be used to determine the initial data of
the numerical computations just as has been done in [16] in the solution of the problem of motion of a film
with an incompressible surface.

In dimensionless notation
=18 h=hy, I = (c/2% pvh h, ‘ “4.3)
there follows from (4.1) for values of y as x—+—ow
Wy —y' + Wy —1) =0, W=hyu,/bpl
The equation
WA - A +W =0

corresponding to a solution of the form 1+exp (A£), has two positive real roots for We ¥/ ;22/5. For W>
1/322/ 3 there are two complex roots ReA > 0. Correspondingly, for W« 1/322/ 3 the asymptotic solution is
monotonic and for large values of W has the form of a wave with rapidly damping amplitude. The mono-
tonic solution is characteristic for a tensile surface, while the waveform solution is characteristic for an
incompressible surface. The passage from one solution to the other occurs for ug~ uRy. The asymptotic
investigation of ¢.1) for the case ug>»uRy as X—« yields

v~z A=12p R,/ p,
which corresponds to a passge to the limit of a constant surface velocity. Viscous tension hence decreases

as 1/x.

5. Transition Domain for KL?2 «ug «Rou. Edge Angle

of a Film with a2 Meniscus

In this case u<v, and integration of ¢.1) taking account of @.2) yields

B _ 1 (dh)2 gpghove ap A (1 1) (5.1)

=2 \dr dv ~ 2n6 \h¥ B2

dz? 2 skt dr 2ns

In the dimensionless notation
z =18 h = hey, | = ohy? / (4psv,)
B = AP/ (nohy), o = 2p,B ] (ohy) (5.2)
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the problem of analyzing the transition domain is
" =y + 2y *—~B(l —y?); y>1, 2> —00; Y o>a 2> (5.3)

For B=0 Eq. (5.3) admits of solution in quadratures. Integrating (5.3), we obtain
vV ="%WVy—y? (5.4)

Hence, for the value of o in (5.2) there follows: c,v=2/25. Curve 1 (Fig. 2) corresponds to the solution
for B=0. The transition-domain dimension L can be determined approximately by taking it to be the dis-
tance at which y changed from 1.14 to 2. Then L= 37, andthere follows from (5.2)

Pol? = 0.36 hyo, L? = 0.18 hoR, (5.5)
which confirms the general estimate pyL?~ hg well.
Taking account of a=2/y;, we find the velocity of the inflowing film from (5.2):
vo = (5/4p) he» Vop, (5.6)
The condition for which (5.6) is valid is W (L) «1, which, taking (5.5) into account, is equivalent to pg <
Rypu.

The solution with the van der Waals force taken into account (B = 0) is found numerically. The solu-
tion which decreases most rapidly as x——c is of interest. The scale of the change in another possible so-
lution is considerably greater and this solution will not be discussed.

The y(¢) curves 2 and 3 in Fig. 2 correspond to the values B=0.08 and 0.16. The dependence o (B) is
hardly different from the linear
a = 0.08—0.58

which yields a correct result for B=0 and 0.16, and the difference in slope does not exceed ~12%. The fact
that =0 at B= 0,16 is important. Since from (5.2)

3pm/!/ps =Bla (Pm = —II = A / 6 nhy®)

then [py, >>p0] as [B—0.16] and the van der Waals forces play a major part in the transition domain. The
asymptotic y(£) as £ —o has the following form for B=0.16: y=0.4¢. Thedimension of the transition do-
main is already not determined by the quantity Py » but byp'm(L2 ~g hy/2pm). Hence, L « vhyR,. Therefore,
for P, >Pg the film makes the edge angle

8 = (A /o)yt (5.7)
with the meniscus.

The velocity of film influx detetmined from (5.2)

vo=(5/8 u)Vde/n (6-8)
is independent of the thickness if B~ 0.16.
The approximate formula
) 5 . A JER
Vo = ZE ol I/G(Pa + Ttk ) (5.9)

agrees with the exact formulas (5.6) and (5.8) in the limits hy— e and hy— 0 and has an error not exceeding
4% for intermediate values.of hy when p; ~ A/@7h®).

6. Transition Domain for pug>» Ryu. Breakdown under

the Effect of the Van der Waals Force

In the case under consideration, the surface behaves as an incompressible surface in the transition
domain. The velocity v~ v, and the Eqs. (4.1) simplify to
dsh A dh 24w

ST T dm

(ho — B) 6.1)

This equation has been examined in [16] for A =0, where the influx to the meniscus has been investi-
gated of a film whose surface is incompressible because of . Let us note that such a situation is not possi-

345



ble for films being thinned. When the surface is incompressible because of ¢ in the transition domain, then
it is incompressible everywhere, and the velocity is v=0.

The viscous tension of the Ty, component of the viscous-stress tensor in the surface defined by (1.5)
is important. In addition to the conditions h—hj as X+, gh" —2pg, as x— =, the condition for the differ-
ence in the viscous tension Tx—x) as X——w and the viscous tension TX(‘;) as X—e should be satisfied. The

tensions T}({_X) and T ) produced because of the surface viscosity can be substantial only when W(L)>1. Their
values can be foundx%{rom the solution of the problem in the exterior of the transition domain.

There follows from (1.2) and (1.5) for the difference in tensions
T =273 — 278 =Y, 0 (hh" — Y, B'%), + A | (hukg?) (6.2)
Here T>0 alWays, since in the interior domain the surface is stretched (Tz((_x)> 0), but is compressed

(Tg()< 0), on the meniscus above the transition domain. Here the subscript » denotes the limit value X - .
Replacement of the variables (4.3) results in the problem of finding solutions y(£) of the equation

) ¥y + By +yly—1)=0 (6.3)
under the conditions

y—1a E—- — o0
Yoo = & (yy" — Yoy + Yy B = aly (6.4)

22 o B, A T

o=—5 B=73% m=gge Ti=gm

J
The asymptotic of the solution of 6.3) as £+~ is
y =14 exp (a,8) cos (@t + @) (6.5)
to the accuracy of translation.

The constants @; and a, here are determined from the solutions of the cubic equation

M4 BA+1=0A=a +ig >0 a>0

Assigning a value of the phase angle ¢ in (6.5) between 0 and 27, and continuing the solution having
the form (6.5) for —a;£> 1, numerically, inthe domain £ >0, we obtain all the solutions of the problem (6.3),
6.4).

The characteristic modes of the transition domain are represented in Fig. 3 for the values B=0 and 1
{curves 1 and 2, respectively) and Ty=0. The limit T<pgsh, corresponds to the value of the dimensionless
tension Ty=0. As should be expected from an analysis of the asymptotic, the solution in the transition do-
main is of wave nature.

Numerical computations yield the dependence of the quantities @, Ty, B in parametric form as the
functions Ty (B, ¢) and @ (B, ¢). The function Ty (e, B) is shown in Fig. 4 for the values B=0, 0.5, 0.8, 1.105,
1.5, 1.8 (curves 1-6, respectively). The quantity max T; decreases monotonically from 0.346 at B=0to 0
at B=1,105, while max T;< 0 in the domain B> 1.105.

In the absence of van der Waals forces (B=0) and for the viscous tension T «pg;h, we have the quan-
tity @=1.185. Hence, it follows from @.3) and (6.4) that

vy = 0.092 (poho)’: / (na') 6.6)
The maximum value of the ratio pm/pa= 0.18 for Ty =0 is reached for B=0.9.

For B>1.105 or p,,>0.18 p, no stationary solution exists in the transition domain which will satisfy
the condition T>0. For pm<pg the lack of solutions means the transition to a flow with a frozen surface
when it is necessary to take account of the change in thickness to the transition domain in the interior do-
main of the film. The disappearance of stationary solutions means that a much more rapid thinning of the
film has started in the transition domain than in the interior.

For py,~ 0.18 p, the disappearance of a stationary solution at h=h, is accompanied by rapid break-
down of the film. The wavy nature of the solution (Fig. 3) contributes to this since the pressure p in thinner
film sections is elevated substantially because of the molecular forces and grows sharply as the thickness
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diminishes. Therefore, if ug>Rgu, then breaks in the film in the transition domain occur, as follows from
the conditions py, <0.18 p; and (6.4), at a thickness greater than or equal to

hy = 0.66 (4 / ps)'h

7. Plane-Parallel Thinning

The film surfaces remain parallel planes with a variable distance h,(t) between them if the velocity
distribution has the form v=vyx/r. The film and its surface hence undergo uniform strain. The film is com-
pressed in a direction perpendicular to the surface; its surface broadens. This is pure shear, the exact solu-
tion of the Navier—Stokes equations.

When viscous tension in the inner domain is small compared with the tension in the transition domain,
the two solutions at x~r are merged in the film thickness and velocity, since the corresponding problems
in the transition domain are solved taking account of the viscous tensions being zero as Xx—= ». The merg-
er permits finding the thinning law,

The dependence of the thinning rate on the film dimension r for plane-parallel thinning is
dhy | dt = — 2hgo(he) | T

where the function v;(h,) is determined by the fluid and surfactant properties and depends on the pressure
in the meniscus Py

For the case ug <Ry and in the absence of van der Waals forces, there follows from (5.6) and (1.1)
dho/ dt = — 2.5 by Vops | (n), 1= A, + 21, (7.1)
Hence,h0~t'2/3 as t—oo.
For u, << Ry, ps <€ A/ (bnhy®) we obtain from (5.9)
dhy | dt = —1.25 hy YV Ao/ (ug V1) (7.2)
The film thickness decreases exponentially with time.
The thinning law
dhy | dt = 0.18 pglhgh | (r wo's) (7.3)

follows from (6.6) for the case ug> Ryu when the surface behaves as an incompressible surface in the tran-
sition domain.

The time dependence is analogous to (7.1).
Compliance with the conditions found in Sec. 3 is necessary for the validity of (7.1)-(7.3).

As g grows in the domain ug>Ryu the formula (7.3) ceases to be valid when the viscous tensions out-
side the transition domain turn out to be substantial,

In order to take account of the viscous tensions outside the transition domain, let us consider the mo-
tion in the surface separately from the fluid motion in the volume by assuming that their interaction is es-
sential only in the transition domain which we replace by a tension jump. Analysis of the asymptotic out- -
side the transition domain shows that such an approach is justified in the limit pg>Ryu. Moreover, we as-
sume in the derivation that the film radius r is much less than the meniscus radius R,. Then the surface
of the meniscus is slightly different from a plane at a distance of the order of several r.

Equation (1.4) taking account of (1.5) under the assumptions made yields

d?y 1 dv v
wtrm =0

Hence, taking account of the condition v=v, at X=r, Wé find that
v=vx/r foa z[0,rl,v=vg /% for z>T
The viscous tensions in (6.2) hence equal
TR =20 +n)vo/r, T =—2u004/r, T =40 +20)v0/r (7.4)

Analogously, in the plane case
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v=ov/r foo 10, 7], v = v, for z>r (7.5)
T =20+ 20) v,/ 7 )
Equating the values of the outer tension jump (7.4) or (7.5) to the inner jump determined from (6 4),

we find
A 42, ( 2p ho

]
opr s ) = a’/’TI (0') (76)

Here =1, 2 in the axisymmetric and plane cases, respectively. The tensions in the inner domain can
be neglected if the left side of (7.6) is much less than one. Both a~1.185 and the thinning law (7.3) corre-
- spond to this. As the left side of (7.6) grows, the parameter o increases monotonically as follows from Sec.
6, and hence the rate of thinning drops.

8. Thinning of a Film under the Effect

of van der Waals Forces

When the role of surface diffusion is small as compared to the role of volume diffusion

there follows from (3.5) and (3.3) under the conditions of a predominating effect of the van der Waals forces
A {D{ +bep 1\ .. 1 oh
-—-—z—n—<—————4H%HI, +m—) div (Tgl'adh) ='BT (8'2)

Although this equation is nonevolutionary and the Cauchy problem is incorrect for it, its solution is
of interest because the films are sometimes thinned only under the effect of van der Waals forces [17] prior
to breaking down.

Equation (8.2) admits of the solution

b= (hog—at) Y (z) (8.3)
In the axisymmetric case the function Y x) satisfies the equation
B (S T o R ) =
Y=1,Y =0 for a=0 (8.4
For numerical integration it is convenient to select the variable
E=z)Va /G

The result of a numerical computation is represented by the curve 1 (Fig. 5). At the point £,=2.828
there is a vertical asymptote; the film thickness becomes infinite as (go—g)'z.

In (8.3) a=G¢ rz/rz. Here £ is a point on the curve y(£) to which the film radius r corresponds. The
value of £, can correspond to both the distance to the asymptote and to the distance £,.=1.53, say, at which
the film thickness doubles.

In this latter case the thinning law differs slightly for D=0 from that which follows from the Reynolds
equation [17]. The linear dependence (8.3) agrees with experiment [17].

In the plane case, an equation analogous to (8.4) which follows from (8.2)
Yd&Y | dE® — (dY [ dE)® = Y3
is integrated explicity:
Y =1/ cos? (E)2) (8.5)
Evidently Y—w as £—n/ VY2 = 2221, Curve 2 (Fig. 5) corresponds to (8.5).
When just surface diffusion is important, i.e., in the limit case opposite to (8.1), Eq. (3.5) is
AD; oh

. 1
mdlv (—hg-gradh) = — 7 (8.6)

if 6D >cHRT p is satisfied. There is the particular solution
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h=hy(1 —t/ %Y (z), Y (0) =1

In the plane case Y (£) is determined by the quadrature

YRY “ho AD,
9 — 2, —_ o - s
V2 S efdt =8, E= erM v M= omwr

0

The solution (Fig. 5, curve 3) becomes infinite at £ =vT/2. The quantity ¢, is determined in terms of

the value of T corresponding to the film radius r as

T = hg? [ (M)
As is seen from (8.6), in the axisymmetric case, Y (¢) satisfies the equation
YY" —2Y2 4 YY'z ! — Y =
The solution with the initial data Y=1, Y'=0 at £ =0 becomes infinite for £ =1.68 (Fig. 5, curve 4).

The thickness h is twice the thickness at the center for £ =1.325.

The presence of a vertical asymptote in the solution is common to all four problems considered. The

solutions obtained can be meaningful only when the capillary pressure in the meniscus is py<pm =— II (),
and, therefore, the film dimension is of the order of the distance to the vertical asymptote.

N. V.

[AV]
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13.

14.

15.

16.
17.

The author is grateful to A. A. Trapeznikov for attention to the research, and to G. A. Martynov and
Churaev for discussing the results.
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